
Learning Fine-Grained Semantics for
Multi-Relational Data

Nitisha Jain and Ralf Krestel

Hasso Plattner Institute
University of Potsdam, 14482 Potsdam, Germany

<firstname.lastname@hpi.de>

Abstract. The semantics of relations play a central role in the un-
derstanding and analysis of multi-relational data. Real-world relational
datasets represented by knowledge graphs often contain polysemous re-
lations between different types of entities, that represent multiple seman-
tics. In this work, we present a data-driven method that can automati-
cally discover the distinct semantics associated with high-level relations
and derive an optimal number of sub-relations having fine-grained mean-
ing. To this end, we perform clustering over vector representations of en-
tities and relations obtained from knowledge graph embedding models.1

Keywords: relation disambiguation · knowledge graph embeddings.

1 Introduction

Relations between different words or phrases are important for the semantic
understanding of text. For real-world data, the relations are oftentimes polyse-
mous by nature, i.e., they exhibit distinct meanings in different contexts. Similar
to the task of word-sense disambiguation, relation disambiguation is needed to
interpret the specific contextual semantics of relations in such cases. Relation
semantics are particularly important in the context of knowledge graphs (KGs)
that are widely used as multi-relational databases and constructed from natural
language texts, where relation polysemy occurs frequently [8]. Since the ontolo-
gies for most large scale KGs have been curated based on texts through manual
or semi-automated efforts, relations between the entities are often abstracted
for simplification and avoidance of redundancies. This may result in cases where
a single high-level relation serves as a generic notion between various different
types of KG entities and has more than one semantic meaning associated with it.
Due to the diversity of the kinds of associations between entities, abstract rela-
tions may not be sufficiently representative of the underlying semantics that they
are supposed to capture. E.g., in Yago3 [7] the majority of the relations have
multiple entity types (concepts) associated with them, with generic relations

Copyright 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

1 https://hpi.de/naumann/projects/web-science/ontology-engineering.html



Table 1: Examples of multiple semantics of
relations

created
class types

owns
class types

(artist, medium) (country, club)
(artist, movie) (company, club)
(player, movie) (company, company)
(officeholder, movie) (sovereign, building)
(writer, movie) (company, airport)
(writer, television) (organization, airport)
(writer, fictional character)
(artist, computer game)
(company, computer game)

Fig. 1: Visualization of ∆r vectors for
owns relation having different types

such as owns and created exhibiting very high type plurality. Some examples of
the entity types that are associated with these relations are shown in Table 1
in the form of (head, tail) pairs. It can be seen that created is associated with
(company, computer game), as well as (painter, artwork), despite the different
contexts and dissimilar entity types. If such relations are split into fine-grained
sub-relations, the precise contextual semantics as per the associated entity types
can be clearly represented. Defining fine-grained semantics between the entities
of a KG is important for facilitating several related applications such as question
answering [2] and knowledge base completion [5].

However, due to the broad spectrum of semantic distances between the dif-
ferent entity types, it is a non-trivial task to determine an optimal way to split
a relation into sub-relations, both in terms of the number of sub-relations, as
well as the entity types that the sub-relations should represent. E.g., while some
entity types are semantically similar to one another such as television and movie
for created relation, other types are quite different, for instance, company and
writer for created, or airport and club in the case of owns relation. We propose a
data-driven, scalable method called SemSplit that can automatically determine
an optimal configuration on a per-relation basis for a given dataset. Some pre-
vious works have discussed the identification of multiple relation semantics [6,
10]. However, they either perform manual clustering or propose rigid techniques
with predefined number of clusters for all relations across a dataset, and thus,
unlike our method, such approaches are not scalable or suitable for large and/or
dynamic datasets.

The proposed method, SemSplit, leverages knowledge graph embeddings that
provide semantic representations of the KG entities and relations in a continuous
vector space. Popular KG embedding models such as TransE [1] are trained
such that the vectors h, r and t associated with a triple <h, r, t> satisfy h +
r = t or r = t - h. Previous work has shown that these embeddings are able
to capture relation similarity, i.e., relations having similar meanings stay close
in the embedding space [4]. On the contrary, we found that relations having
multiple semantics are not well represented in the vector space, i.e., for the



triples of a relation r, the t - h vectors denoted by ∆r, are not necessarily in
the neighborhood of the actual relation vector. This is illustrated in Figure 1
where the original relation vector r for owns (that was calculated from all its
fact triples) does not serve as the center of a single cluster for all the ∆r vectors.
This is because the different type pairs connected by the same relation are quite
different from one another semantically, and thus, form their own clusters. In
this work, we perform clustering on the ∆r vectors and identify an optimal
number of clusters that represent diverse semantics exhibited by the entity type
pairs connected by the relation. These clusters can be employed for splitting the
relation into several fine-grained sub-relations.

2 SemSplit: Clustering Relations

For every unique relation r in a given KG, the first step is to obtain the cor-
responding set of fact triples <h, r, t>. For every such triple, the entity types
of the head and tail entities, denoted as Th and Tt, are extracted from the KG
ontology. The triples are categorized by the unique type pairs (Th, Tt) that will
be used to derive the labels of the clusters during the clustering stage. The set
of all unique type pairs for relation r is denoted by Sr. For each type pair in Sr,
the vectors ∆r = t− h are calculated and saved for all the triples associated
with it. Here, the vectors t and h for the entities are derived from pre-trained
KG embeddings.

For the clustering, we leverage the ∆r vectors for finding suitable clusters
that will represent the different semantic meanings for a relation and hence derive
the sub-relations for a given relation. Since ∆j vectors capture the semantics
of the type pairs, vectors that are close in the embedding space would convey
similar semantic meaning. A maximal splitting of the relation, with one sub-
relation for every different type pair, would be inefficient and lead to a large
number of unnecessary sub-relations. For example, the created relation has type
pairs (artist, painting) and (artist, music) that have the same head entity type
and hence related meanings, while the type pair (company, computer game)
portrays a different context. The SemSplit clustering performs the challenging
task of finding an optimal number and composition of clusters Copt for the type
pairs, that can convey the distinct semantics of the relations based on the KG
triples, by combining similar type pairs while separating the dissimilar ones.

In order to automatically determine the optimal configuration, clustering is
performed for several iterations with a varying number of clusters. It starts with
L = |Si| clusters, where every cluster corresponds to a distinct type pair for
the relation, and the cluster labels are assigned accordingly. To narrow down
the search space for the optimal clusters in further iterations, SemSplit lever-
ages the semantic similarity of type pairs. For this, the cosine similarity scores
between all combinations of type pairs are calculated with the help of ConVec
embeddings [9] that represent the semantics of the types quite well. For each
subsequent iteration, the most similar type pairs (with ties broken arbitrarily)
are merged and assigned a combined cluster label that serves as ground truth,



Table 2: Examples of SemSplit Clusters

Relation
SemSplit optimal clusters Copt

Homegeneity Score (# clusters)
(algorithm) Corig Cmax(L) Copt(N )

created
(OP)

{(artist, computer game)}, {(artist, medium) (officeholder, movie)},
{(writer, movie) (writer, television) (artist, movie) (player, movie)},
{(company, computer game)}, {(writer, fictional character)}

0.14 (1) 0.29 (9) 0.49 (5)

owns
(SP)

{(company, airport) (organization, airport)}, {(sovereign, building)},
{(company, club) (company, company) (country, club)} 0.03 (1) 0.32 (6) 0.52 (3)

isAffiliatedTo
(HA)

{(artist, club)}, {(cricketer, club)}, {(player, club) (hockey player, club)
(hockey player, university) (hockey player, team)}, {(officeholder, club)} 0.09 (1) 0.43 (7) 0.61 (4)

along with the labels of other type pairs. This process of reducing the number of
clusters and updating the labels by merging type pairs is followed until all the
type pairs have been progressively combined back together in one single cluster.
Finally, the optimal number of clusters N = |Copt| is determined based on a
cluster quality score calculated after each iteration.

3 Evaluation

Dataset. For this work, we have prepared a dataset that is derived from the
Yago3 knowledge base and ontology. The class types (concepts) of all entities
were extracted and the 53 most frequent concepts (having at least 10,000 entities
associated with them) were taken into consideration. Thereafter, we extracted
the fact triples that were comprised of entities associated with the chosen con-
cepts. This resulted in a dataset of 1,492,078 triples with 917,325 unique entities
and 31 relations.

Cluster Quality. To analyze the performance of SemSplit, we employed several
algorithms to obtain the clusters in high dimensional vector space : Spectral (SP),
Optics (OP) and Hierarchical Agglomerative (HA) clustering. The entity and
relation vectors were obtained from pre-trained ConvE KG embeddings [3]. The
quality of the clusters, and thereby, the resultant sub-relations is measured in
terms of homogeneity score [5] that favors a clustering scheme where every cluster
represents a unique dominant type. Table 2 shows examples of the optimal cluster
configurations obtained by SemSplit with different algorithms. The performance
of Copt is compared to two baseline configurations — original relation cluster
(Corig) and maximal splitting clusters (Cmax), in terms of the cluster homogeneity
scores and the number of clusters. The results indicate that while it is favorable
to split the original relation cluster into multiple sub-relation clusters, a naive
splitting leading to maximal sub-relation clusters is also not the ideal solution
for representing the fine-grained semantics. It can be seen that the Copt clusters
obtained by SemSplit perform better than both the original relation as well
as the naive maximal splitting of the relations in terms of homogeneity scores,
thus indicating the efficacy of the method for finding optimal fine-grained sub-
relations.



4 Conclusion

In this paper, we have studied the need for relation disambiguation for knowledge
graphs due to the inherent relation polysemy in these datasets. We have proposed
a scalable, data-driven method SemSplit that automatically determines an opti-
mal configuration for deriving sub-relations with concrete semantics. First exper-
iments have confirmed the importance of learning fine-grained relation semantics
for real-world data and shown promising results for SemSplit performance. We
plan to perform a systematic analysis of the utility and impact of our method
on semantic tasks, such as relation extraction and question answering over KGs.

References

1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems. pp. 2787–2795 (2013)

2. Cui, W., Xiao, Y., Wang, H., Song, Y., Hwang, S.w., Wang, W.: KBQA: Learning
Question Answering over QA Corpora and Knowledge Bases. Proc. of the VLDB
Endowment 10(5), 565–576 (2017)

3. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge
graph embeddings. In: Proc. of the 32nd AAAI Conf. on Artificial Intelligence
(2018)

4. Do, K., Tran, T., Venkatesh, S.: Knowledge Graph Embedding with Multiple Rela-
tion Projections. In: Proc. of the 24th International Conf. on Pattern Recognition
(2018)

5. Jain, P., Kumar, P., Chakrabarti, S., et al.: Type-sensitive Knowledge Base Infer-
ence without Explicit Type Supervision. In: Proc. of the 56th Annual Meeting of
the Association for Computational Linguistics. pp. 75–80 (2018)

6. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning Entity and Relation Embed-
dings for Knowledge Graph Completion. In: Proc. of the 29th AAAI Conference
on Artificial Intelligence (2015)

7. Mahdisoltani, F., Biega, J., Suchanek, F.: YAGO3:A Knowledge Base from Mul-
tilingual Wikipedias. In: Proc. of the 7th Biennial Conference on Innovative Data
Systems Research (2014)

8. Min, B., Shi, S., Grishman, R., Lin, C.Y.: Ensemble Semantics for Large-scale
Unsupervised Relation Extraction. In: Proc. of the Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language
Learning (2012)

9. Sherkat, E., Milios, E.E.: Vector Embedding of Wikipedia Concepts and Entities.
In: Proc. of the International Conference on Applications of Natural Language to
Information Systems. pp. 418–428. Springer (2017)

10. Zhang, Z., Zhuang, F., Qu, M., Lin, F., He, Q.: Knowledge Graph Embedding with
Hierarchical Relation Structure. In: Proc. of the 2018 Conference on Empirical
Methods in Natural Language Processing. pp. 3198–3207 (2018)


